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ABSTRACT
As students learn how to program, both their program-
ming code and their understanding of it evolves over time.
In this work, we present a general data-driven approach,
named Temporal-ASTNN for modeling student learning pro-
gression in open-ended programming domains. Temporal-
ASTNN combines a novel neural network model based on
abstract syntactic trees (AST), named ASTNN, and Long-
Short Term Memory (LSTM) model. ASTNN handles the
linguistic nature of student programming code, while LSTM
handles the temporal nature of student learning progression.
The effectiveness of ASTNN is first compared against other
models including a state-of-the-art algorithm, Code2Vec across
two programming domains: iSnap and Java on the task of
program classification (correct or incorrect). Then the pro-
posed temporal-ASTNN is compared against the original
ASTNN and other temporal models on a challenging task
of student success early prediction. Our results show that
Temporal-ASTNN can achieve the best performance with
only the first 4-minute temporal data and it continues to
outperform all other models with longer trajectories.
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1. INTRODUCTION
Learning how to program is like learning how to write in
a second language. As students learn to author code, both
their programming code and their understanding of it evolves
over time. Prior research has either focused exclusively on
developing accurate linguistic models of their artifacts [30,
24, 1, 42], or developing temporal models of students com-
prehension of programming [11, 21, 23]. In this work, we
propose a general data-driven approach named Temporal-
ASTNN, which combines a state-of-the-art neural network

model based on abstract syntax trees (AST) named ASTNN
– addressing the linguistic structure of the students’ artifacts
– along with Long-Short Term Memory (LSTM), which han-
dles their learning progression. In this way we effectively
marry both aspects of the process in a single system.

Much as language is how people communicate, programming
languages are how we communicate with machines, and var-
ious natural language processing (NLP) techniques can be
applied to modeling programming languages [15]. Tradi-
tional approaches for code representation often treat code
fragments as natural language texts and model them based
on their tokens [7, 9]. Despite their simplicity, token-based
methods omit the rich and explicit structural information
[25] in student codes. Until recently, deep learning models
have achieved state-of-the-art results on source code analy-
sis, including code functionality classification [24], method
name prediction [1], code clone detection [42] and so on.
These successful models usually combine Abstract Syntax
Tree (AST) representations with various neural networks to
capture the structural information from the programming
language. Their impressive performance shows that by ad-
dressing the linguistic structural nature of code, syntactic
knowledge is indeed important to learn meaningful code rep-
resentation.

On the other hand, modeling student learning progression
in open-ended programming environments is also a type of
student modeling. Generally speaking, student modeling
has been widely applied to predict the student’s future per-
formance based on historical data. For well-defined learn-
ing environments, student models usually monitor students’
learning progress (correct or incorrect) over time to infer
their knowledge states, such as Bayesian Knowledge Trac-
ing (BKT) [8] and Deep Knowledge Tracing (DKT) [29].
When it comes to open-ended programming environments,
student modeling becomes much more challenging because
1) the correctness evaluation concerning each step taken by
students will not be available, and 2) it is extremely hard to
represent student states. As a result, prior research either
has focused on utilizing other features such as hint usage,
interface interactions to evaluate student learning outcomes
[11], or creating meaningful states by transforming student
click-like log files into fixed feature sets for various student

Ye Mao, Yang Shi, Samiha Marwan, Thomas Price, Tiffany Barnes and
Min Chi “Knowing When and Where: Temporal-ASTNN for Student
Learning Progression in Novice Programming Tasks”. 2021. In: Pro-
ceedings of The 14th International Conference on Educational Data Min-
ing (EDM21). International Educational Data Mining Society, 172-182.
https://educationaldatamining.org/edm2021/
EDM ’21 June 29 - July 02 2021, Paris, France

172 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)



www.manaraa.com

modeling tasks [21]. While such prior work is able to capture
the temporal information from historical data, it ignores the
linguistic, structural property of student code. As an accu-
rate student model is a building block for any educational
system that provides adaptivity and personalization, it is es-
pecially important to model student learning progression in
open-ended programming tasks by addressing both linguis-
tic and temporal characteristics in student code sequences.

In this work, we present a data-driven approach named
Temporal-ASTNN to model student learning progression in
open-ended programming domains. Temporal-ASTNN con-
sists of two main modules: 1) ASTNN [42] for code represen-
tation learning, which can handle the linguistic structure of
student code, and 2) LSTM [16] for temporal learning, which
handles the temporal nature of student learning progression.
In order to explore the effectiveness of our model, we focus
on two types of student modeling tasks. One is the task
of program classification (correct or incorrect), in which the
effectiveness of ASTNN is compared against other models
including a state-of-the-art algorithm, Code2Vec [1] across
two programming domains: an open-ended block-based pro-
gramming environment named iSnap and a textual program-
ming environment for the Java programming language. The
other is the task of student success early prediction in which
the effectiveness of temporal-ASTNN is compared against
the original ASTNN and other models integrating with dif-
ferent feature embeddings on iSnap only because it has tra-
jectories of student codes.

Our main contributions are: 1) To the best of our knowledge,
Temporal-ASTNN is the first model to address both linguis-
tic and temporal properties of student learning progression
in programming tasks; 2) We explored the robustness and
the effectiveness of our model on student success early pre-
diction task and compared it with state-of-the-art temporal
models; and 3) We evaluated the effectiveness of ASTNN
against Code2Vec and various baseline models on student
program classification tasks across two domains, while most
prior research mainly focused on classic tasks of professional
source code analysis instead of novice programming.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the methods. Section 3 and 4 describe the
two types of programming tasks together with experimental
settings and results. Section 5 presents the related work.
Finally, we discuss and conclude our work in Section 6.

2. METHODS
Problem Definition: For the task of student program classi-
fication, our dataset can be represented 〈X,Y 〉 = {〈x1, y1〉,
〈x2, y2〉, ..., 〈xN , yN 〉} where N is the total number of codes
in the dataset where xi represents a code snippet of student
i and binary yi indicates whether the code is correct or not.

For the task of student success early prediction, our dataset
can be represented as X = {x1,x2, ...,xM}, where M is the
number of students. For a given student k, xk = {xk

1 , ...,x
k
Tk
},

where xk
t represents student k’s code at time step t in xk and

Tk is the total number of codes in the student k’s learning
trajectories which varies with different students. For each
xk, we are provided with the outcome label yk for the out-
come of the sequence of codes. yk = 0 indicates the student

Figure 1: An examaple of iSnap code and the AST represent-
ing its syntactic structure. Red highlights a sample path, and
blue highlights a sample ST-tree.

k succeeded, otherwise yk = 1. The goal of student success
early prediction is to predict the yk using the student’s codes
from the beginning up to the certain minutes: xk

1 ,x
k
2 , ...,x

k
t .

For simplicity, we omit index k hereinafter when it does not
cause ambiguity.

2.1 Temporal-ASTNN
Figure 2 shows the detailed structure of Temporal-ASTNN.
Fundamentally, it contains a ASTNN which learns the em-
bedding for student code and a LSTM layer which han-
dles the temporal aspect. It is important to note that in
Temporal-ASTNN, the two modules interact with each other
to control how information flows.

Figure 2: Temporal-ASTNN model structure: the output of
ASTNN connects to the input of LSTM.

2.1.1 ASTNN
ASTNN is one of the state-of-the-art methods in source code
analysis, and it’s main idea is to learn a vector for the code
through statement-level ASTs. Specifically, we split the
large AST of a code fragment by the granularity of state-
ment and extract a sequence of statement trees (ST-trees)
via pre-order traversal. As shown in Figure 1 (highlighted in
blue), we can get a ST-tree rooted at forward, whose child
is literal and grandchild is 100. In this way, we will get a
sequence of ST-trees from the original AST, and feed them
as the raw input of ASTNN. As shown in Figure 2, ST-trees
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Figure 3: Statement Encoder of ASTNN, composing by an
Embedding layer, an Encoding layer and a max-pooling layer.

will first pass Statement Encoder, then go through Bidirec-
tional GRU (Bi-GRU) [2], finally pass max-pooling layer to
get the vector for code representation.

Statement Encoder: Figure 3 shows the detailed structure of
statement encoder. Assuming that there are J total nodes
in a ST-tree si, for each node nj

i ∈ si, j ∈ [1, J ], it will
first go through the embedding layer to get initial embed-
dings vji = Wembed

>nj
i , where Wembed ∈ RV×d is the

pre-trained embedding matrix, V is the vocabulary size and
d is the embedding dimension. Then the vector will be up-
dated through a Recursive Neural Network [35] based en-
coder layer: hj

i = σ(Wencode
>vji +

∑
hchild + bji ). Here

Wencode ∈ Rd×k is the encoding matrix and k is the encod-
ing dimension. b is the biased term and σ is the activation
function, in this work we followed the original paper to set
σ as identify function. After recursive optimization of the
vectors of all node in the ST-tree, we sample the final rep-
resentation ei via a max-pooing layer:

ei = [max(hj1
i ),max(hj2

i ), ...,max(h
jk
i )], j ∈ [1, J ] (1)

Code Representation: For a set of ST-trees (s1, s2, ..., sL),
where L is the number of ST-trees in the AST, our goal is to
get a code vector z as final representation. After generating
a sequence of vectors (e1, e2, ..., eL) from Statement Encoder,
we will apply Bi-GRU to track the naturalness of statements
sequence:

hi = [
−−−→
GRU(ei),

←−−−
GRU(ei)], i ∈ [1, L] (2)

The statement representation hi ∈ RL×2m, where m is the
embedding dim of Bi-GRU. Finally, similar to Statement
Encoder, a max-pooling layer is used to sample the most im-
portant features on each of the embedding dimension. Thus
we get z ∈ R2m, which is treated as the final vector repre-
sentation of the original code fragment.

In original ASTNN, we can add another linear layer to di-
rectly fit z to the following prediction tasks. While in Temporal-
ASTNN, z will be used as the input for LSTM memory cell.

2.1.2 LSTM
As shown in Figure 2, at each time step t, the output of
ASTNN zt will be used as the input for LSTM cell. Once
ASTNN generates the code representation by learning the
linguistic nature from code xt:

zt = ASTNN(xt) (3)

LSTM is trained utilizing input vector zt to handle the tem-
poral information. There are three major components: a
forget gate, an input gate, and an output gate in a LSTM
memory cell.

Forget Gate: In the first step, a function of the previous
hidden state ht−1 and the new code input zt passes through
the forget gate, indicating what is probably irrelevant and
can be taken out of the cell state. The forget component
will calculate a weight ft between 0 to 1 for each element in
hidden state vector Ct−1. Here Wf and bf are the weights
and bias for the forget component.

ft = sigmoid(Wf · [ht−1, zt] + bf ) (4)

Input Gate: There are two steps involved in input compo-
nent’s calculation. In the first step, a tanh layer calculates
a candidate vector C̃t that could be added to the current
hidden state. In the second step, the input components cal-
culate a weight vector it (ranging from 0 to 1) to determine

to what extent C̃t should update the current memory state.

C̃t = tanh(Wc · [ht−1, zt] + bc)
it = sigmoid(Wi · [ht−1, zt] + bi)

(5)

Output Gate: The output component is simply an activation
function that filters elements in memory cell state Ct, where
Ct = Ct−1 · ft + C̃t · it. It calculates a weight vector to
determine how much information is allowed to be revealed:

ot = sigmoid(Wo · [ht−1, zt] + bo) (6)

Finally we get the output of time t: ht = ot ∗ tanh(Ct). In
this work, we used the last-step output from LSTM as the
temporal representation of student code sequence.

2.1.3 Temporal-ASTNN: Truncated vs. Entire
As shown in Figure 2, by combining ASTNN and LSTM,
the final Temporal-ASTNN can be described as:

z1, ..., zT = ASTNN(x1, ..., xT )
hT = LSTM(z1, ..., zT )
ŷ = sigmoid(WlhT + bl)

(7)

where ŷ is the output from Temporal-ASTNN, Wl is the
weight matrix bl is the bias term for the liner layer. The
entire Temporal-ASTNN framework is learned by optimizing
ASTNN and LSTM parameters spontaneously. They are
optimized by minimizing the binary cross-entropy:

L(ŷ, y; Θ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (8)

Prior research on applying ASTNN for source code analysis
only used one snippet of code fragment to extract mean-
ingful representation for following machine learning tasks.
However, when combining ASTNN with LSTM on student
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programming sequences such as iSnap for early prediction,
we have the choices of either using the truncated training
sequences or using the entire sequences. The advantage of
using truncated sequences is that the training data would
be more similar to the testing data and thus, the learned
representations are more likely to emerge and be represen-
tative for the early success task. On the other hand, the
advantage of using entire sequences is that the longer the
sequences, the more meaningful AST patterns can be consid-
ered and discovered. Thus, we explored Temporal-ASTNN
using both the entire and the truncated sequences for rep-
resentation learning and referred as Temporal-ASTNNTrunc

and Temporal-ASTNNEntire respectively.

2.2 Code2Vec
Code2Vec [1] leverages different features and model struc-
tures, and focuses on the dependency of distant components
in code structures to achieve code classification tasks. As
with ASTNN, Code2Vec is designed to address the linguis-
tic structure of programming languages. Fundamentally,
there are two main differences between these two models:
1) ASTNN takes a set of statement-level ASTs as inputs,
while Code2Vec utilizes the syntactic paths of ASTs to learn
the representation (an example path is shown in Figure 1 in
red). And 2) After encoding the vector representations of
ST-trees, ASTNN uses Bi-GRU to handle the sequence of
vectors; while Code2Vec utilizes an attention mechanism to
learn a weighted average of path vectors and thus to produce
the final code representation. With the vector representing
code, Code2Vec can also be used for various prediction tasks.

3. STUDENT PROGRAM CLASSIFICATION
In the task of student program classification, we aimed to
predict the correctness (correct or incorrect) of student sub-
mitted code. The effectiveness of ASTNN is compared against
Code2Vec and other token-based models across two pro-
gramming domains: iSnap and Java.

3.1 Datasets
3.1.1 iSnap

iSnap is an extension to Snap! [13], a block-based pro-
gramming environment, used in an introductory computing
course for non-majors in a public university in the United
States [32]. iSnap extends Snap! by providing students with
data-driven hints derived from historical correct student so-
lutions [31]. In addition, iSnap logs all students actions while
programming (e.g. adding or deleting a block), as a trace,
allowing us to detect the sequences of all student steps, as
well as the time taken for each step. In this work, we focused
on one homework exercise named Squiral, derived from the
BJC curriculum [13]. In Squiral, students are asked to write
a procedure that draws a square-like spiral. As shown in
Figure 4, correct solutions require procedures, loops, and
variables using at least 7 lines of code. We collected stu-
dents’ data for Squiral from Spring 2016, Fall 2016, Spring
2017, and Fall 2017. We excluded students who requested
hints from iSnap to eliminate factors that might affect stu-
dents’ problem-solving progress, leaving a total of 65, 38, 29,
and 39 student code traces from each semester, respectively.

The data collected from iSnap consists of a code trace for
each student’s attempt. This code trace represents a se-

quence of timestamped snapshots of student code. In prior
research, an expert feature detector has been proposed to
automatically detect 7 expert features of a student snap-
shot [43]. Those expert features are binary and indicate
whether the corresponding feature presents or not. We ran
the expert-feature detector to tag each snapshot in all 171
code traces, making a total of 31,064 tagged snapshots. With
the temporal sequences, iSnap data is evaluated not only on
this classification task, but also on the temporal early pre-
diction task as described in Section 4.

Figure 4: The iSnap interface, with the blocks palette on the
left, the output stage on the right, the scripting area in the
middle, and the hints button on top.

3.1.2 CodeWorkout
CodeWorkout1 is an online and open system for program-
ming in Java. It provides a web-based platform on which
students from various backgrounds can practice program-
ming and instructors can offer courses [10]. Different from
iSnap, CodeWorkout doesn’t log students’ traces during pro-
gramming but only their submissions. In this work, we fo-
cused on one programming exercise named isEverywhere,
where the knowledge of loops and array will be mainly eval-
uated. In isEverywhere, students are asked to write a Java
function to check if a value is “everywhere”, that is in the
given array if the value exists for every pair of adjacent ele-
ments. As shown in Figure 5, the system will show detailed
feedback regarding the student’s submission, indicating how
it failed/succeed on the corresponding test cases.

Figure 5: The CodeWorkout interface, with the problem de-
scription on the top, the coding area in the middle, and the
feedback on the right.

The data collected from CodeWorkout is in Progsnap2 [33]
format, and consists of two semesters: Spring 2019 and Fall

1https://codeworkout.cs.vt.edu/
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2019. Similar to iSnap, we processed the data to eliminate
factors that might affect students’ problem-solving progress,
and only kept the first compliable program from each stu-
dent. In total, we have 448 and 307 student submissions
from each semester, respectively. Please note that in Code-
Workout, only submissions from students are recorded and
sequences of student edits are not available, thus it is only
evaluated on the task of student program classification.

3.2 Task Description
For the task of student program classification, the ground
truth labels are generated as follows: in iSnap, a student’s
submission is correct only if it satisfies all rubrics require-
ments, which are based on the expert-designed features and
verified by humans; in CodeWorkout, a submission is cor-
rect if it passes all testing cases. Table 1 shows the number
of correct and incorrect submissions across the semesters in
each dataset. Note that here we include one submission per
student to ensure that all data points are independent in
both datasets. More specifically, for each student, we in-
clude the student’s “own” submission before receiving any
detailed feedback, which means the student’s final submis-
sion for iSnap and the first submission for CodeWorkout.

Table 1: Data overview on Student Program Classification

Semester
iSnap

correct incorrect
S16 24 41
F16 16 22
S17 12 17
F17 11 28

Total 63 108

Semester
CodeWorkout

correct incorrect
S19 156 151
F19 223 265

Total 379 416

3.3 Experiments
3.3.1 Models Configuration

We conducted a series of experiments across both domains
by comparing ASTNN against the state-of-the-art model
Code2Vec and three token-based classic ML models.

Three Token-based ML Models: Three classic ML models,
K-Nearest Neighbors (KNN), Logistic Regression (LG), and
Support-Vector Machine (SVM) are explored. Following
prior token-based approach, we applied TF-IDF to extract
textual features [42, 34]. The input sentence for TF-IDF
is the sequence of AST-tokens, which is generated by the
pre-order traversal of original ASTs. For each of the three
models, we explored different parameters to obtain the best
results. For KNN, we had k = 10, for LG we used L1 reg-
ularization, and for SVM we used linear kernel. Those pa-
rameters are tuned from 10-fold cross-validation with grid
search, and all three models are implemented through the
sklearn library.

Two AST-based Deep Learning Models: Code2Vec takes a
set of AST-based paths as input, where the number of paths
may vary from different student submissions. Thus we man-
ually padded the number of paths to 100 over all code sub-
missions. During the training, we set the maximum train-
ing epochs as 200, with the patience of early stopping set
to 100, tuned learning rate to 0.0002. Linear layer and em-
bedding dimensions are kept default to 100. To ensure a

highest efficiency of the model, we set the batch size as the
full batch. For ASTNN, the inputs are a set of ST-trees,
and we padded the statement sequences to the maximum
length to accommodate the longest sequence before feeding
to Bi-GRU. During the training, we leverage 32 as batch size,
0.001 as learning rate, and keep the max training epoch as
50. The encoding dim for the statement encoder is set to
128, and the number of hidden neurons for Bi-GRU is set to
100. We implemented both ASTNN and Code2Vec in Py-
torch. Same as the classic models, 10-fold cross-validation
was applied for hyperparameter tuning.

For the task of student program classification, we did not
compare ASTNN and Code2Vec against any models that
used expert-designed features for two reasons: one is that
the expert-designed features are only available for iSnap but
not CodeWorkout; and the other reason is that these expert-
designed features are used to determine the ground truth
label of the student’s final submission in iSnap.

3.3.2 Evaluation Metrics
Our models were evaluated using Accuracy, Precision, Re-
call, F1 Score, and AUC (Area Under ROC curve). Accu-
racy represents the proportion of students whose labels were
correctly identified. Precision is the proportion of students
who were predicted to be incorrect by each model were actu-
ally in the incorrect group. Recall tells us what proportion
of students, who will actually be incorrect, were correctly
recognized by the model. F1 Score is the harmonic mean of
Precision and Recall that sets their trade-off. AUC measures
the ability of models to discriminate groups with different
labels. Given the nature of the task, in the following, we
consider Accuracy and AUC as the most important metrics
because the former is most commonly accepted while AUC
is believed to be generally more robust.

Finally, it is important to emphasize that all models were
evaluated using semester-based temporal cross-validation for
both domains in this task, which only applied data from pre-
vious semesters for training and is a much stricter approach
than the standard cross-validation.

3.4 Results
Table 2 and 3 compare the performing of the five models in
iSnap and CodeWorkout respectively. In iSnap, among the
three token-based models, LG and SVM have very similar
performance as both have an accuracy score of 0.6604; more-
over the best AUC and Precision are from LG and the best
Recall and F1 are from SVM. Both LG and SVM outperform
KNN on all metrics. While in CodeWorkout, Table 3 shows
that the best accuracy, AUC, and Precision are from SVM
and the best Recall and F1 are from KNN. Between the two
AST-based models, ASTNN outperforms Code2Vec in both
domains. It suggests that across the two different student
programming environments, ASTNN is more effective than
Code2Vec on the task of student program classification.

The comparisons between AST-based models with token-
based models show the former significantly out-perform the
latter in both domains; the only exception is that SVM with
token has the highest precision in Java (Table 3). Note
that here the difference between the SVM and ASTNN on
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Table 2: Student Program Classification Results in iSnap

Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.6321 - - - 0.5

Tokens
KNN 0.6132 0.7321 0.6119 0.6667 0.6137
LG 0.6604 0.8298 0.5821 0.6842 0.6885
SVM 0.6604 0.7460 0.7015 0.7231 0.6456

ASTs
Code2Vec 0.6810 0.8038 0.6786 0.7239 0.7017
ASTNN 0.8113** 0.8730** 0.8209** 0.8462** 0.8079**

Note: best models in each group are in bold, and the overall best labeled with **

Table 3: Student Program Classification Results in CodeWorkout

Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.5430 - - - 0.5

Tokens
KNN 0.8709 0.8915 0.8679 0.8795 0.8712
LG 0.8299 0.8922 0.7811 0.8330 0.8345
SVM 0.8770 0.9437** 0.5093 0.6616 0.8822

ASTs
Code2Vec 0.9241 0.9299 0.9359 0.9329 0.9475
ASTNN 0.9529** 0.9416 0.9736** 0.9573** 0.9509**

Note: best models in each group are in bold, and the overall best labeled with **

Precision is rather small while the former has a much worse
accuracy, F1-score, and AUC than ASTNN.

To summarize, our results show that in both domains, ASTNN
achieves the best performance. These results show that
by capturing the meaningful linguistic structure in student
code, ASTNN is indeed more robust on the task of student
program classification. Given its effectiveness, we further
explored the effectiveness of Temporal-ASTNN which com-
bines ASTNN with powerful temporal model LSTM on the
task of student success early prediction.

4. STUDENT SUCCESS EARLY PREDICTION
For student success early prediction task, Temporal-ASTNN
is compared against the original ASTNN and other tempo-
ral models. As mentioned in Section 3.1.2, here we only
explored the early prediction task in iSnap.

4.1 Task Description
In iSnap, we have a total of 171 students and 31, 064 tem-
poral snapshots. Following the definitions used in prior re-
search [23], the successful students are those who completed
the programming assignment within one hour and got full
credit while the rest are counted as unsuccessful. We have 59
successful and 112 unsuccessful ones. The detailed statistics
for iSnap dataset are shown in Table 4. Note that for the
purpose of learning, unsuccessful students are of interest for
this classification task.

To predict student early success, we are given the first up to
n minutes of a student’s sequence data and our goal is to
predict whether the student will successfully complete the
programming assignment at any given point in the remain-
der of the sequence. To conduct this task, we left-aligned all

the students’ trajectories by their starting times and our ob-
servation window (the part of data used to train and test dif-
ferent machine learning models) includes the sequences from
the very beginning to the first n minutes. If a student’s tra-
jectory is less than n minutes, our observation window will
include their entire sequence except the last one.

It is worth noting that student success early prediction is a
much more challenging task compared to program classifi-
cation: 1) besides the linguistic nature in student code, it
also involves temporal information, and 2) the observation
window is very early and thus student final submissions are
not available for training or testing.

4.2 Experiments
4.2.1 Models Configuration

To further explore the power of ASTNN, we did extensive ex-
periments and compared it with the start-of-the-art expert-
designed features [43] and token-based features on the stu-
dent success early prediction task. For each of the feature
embedding (expert, token, AST), we explored two categories
of models: the last value-based Logistic Regression (LG)
models, and the temporal LSTM models. Note that LG is
selected because, among the three classic ML methods ex-
plored on the task of student program classification in iSnap,
LG has achieved the highest accuracy and AUC.

Last-Value Models: Motivated by prior work, we used a“Last
Value” approach [4, 37, 23] to treat the last measurements
within the given observation window as the input to train
models. For early prediction settings, we truncated all the
sequences in the training dataset in the same way as the
testing dataset. For example, when our observation window
is the first 4 minutes, we will only apply the last values in
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Table 4: Detailed data statistics for iSnap, including total steps, total time spent in minutes, and the success labels distribution
for each of the four semesters.

Semester
Total Steps Total Time (minutes) Success Labels

min max median mean(std) min max median mean(std) successful unsuccessful
S16 10 1024 169 199 (175) 0.533 95.667 20.733 22.777 (17.149) 23 42
F16 28 884 121 167 (168) 3.283 119.083 16.325 22.379 (24.177) 15 23
S17 15 439 75 112 (94) 2.817 62.983 14.167 16.347 (11.872) 12 17
F17 10 2276 100 219 (376) 1.65 189.667 19.1 28.224 (33.869) 9 30

Table 5: iSnap Student Success Early Predictions at First-4-minute Only

Data Feature Model Accuracy Precision Recall F1 score AUC

Majority Baseline 0.6604 - - - 0.5

Last-Value
Expert Expert-LG 0.6226 0.8261** 0.5429 0.6552 0.6603
Tokens Token-LG 0.5566 0.7170 0.5429 0.6179 0.5631
ASTs ASTNN 0.6698 0.7612 0.7286 0.7445 0.6421

Temporal

Expert Expert-LSTM 0.7075 0.7191 0.9143 0.8050 0.6099
Tokens Token-LSTM 0.6792 0.6915 0.9286** 0.7927 0.5615

ASTs
Temporal-ASTNNTrunc 0.7642** 0.7711 0.9143 0.8366** 0.6933**
Temporal-ASTNNEntire 0.7453 0.7722 0.8714 0.8188 0.6857

Note: best models in each group are in bold, and the overall best labeled with **

the sequence within the first-4-minute observation window
and use them as inputs for each model. More specifically,
we used the expert features of the last submission within the
observation window to train and test expert-LG; similarly,
the tokens from the last snapshot within the observation
window to train and test token-LG; and the ASTs of the last
submission within the observation window for both training
and testing the original ASTNN.

Temporal Models: We applied LSTM to handle the tem-
poral sequences of student code. Here we used the tem-
poral sequences in the observation window for early predic-
tions. Specifically for a given first-n-minute observation win-
dow: we used the sequences of expert features to train and
test expert-LSTM; the sequences of token features to train
and test token-LSTM. For Temporal-ASTNN, we explored
Temporal-ASTNNTrunc and Temporal-ASTNNEntire. Both
models would first convert student code sequences in the
observation window into sequences of AST vectors and then
feed them into LSTM. They only differ on how their AST
vectors are trained: the former uses truncated sequences
while the latter uses entire sequences (see Section 2.1.3).

To summarize, we analyze two main model settings: last-
value and temporal, together with three different feature
embeddings: expert, tokens, and ASTs. Thus in total we
explored the effectiveness of six models.

4.2.2 Evaluation Metrics
For student success early prediction, all the models are eval-
uated using Accuracy, Precision, Recall, F1 Score, and AUC.
Similarly to the first task, we consider Accuracy and AUC as
the most important metrics, and the more stringent semester-
based temporal cross-validation was carried out.

4.3 Results
We present our results of student success early prediction by
first comparing the effectiveness of all six models on first-4-
minute early prediction and then by exploring their average

performance across different observation windows up to the
first-10-minute data.

4.3.1 Results at First-4-minute Only
Table 5 shows different performance measures of all the six
models at first-4-minute. In the group of Last-Value mod-
els, ASTNN has the best accuracy, Recall and F1 scores
while the best AUC and Precision are from Expert-LG, and
both of them have better performance than Token-LG. Actu-
ally, in terms of accuracy, Expert-LG and Token-LG perform
worse than the simple majority baseline. This is probably ei-
ther because only relying on the first-4-minute is too early or
because the last snapshot of the first-4-minute does not pro-
vide enough information for these models to make effective
early predictions. The fact that across the five evaluation
metrics, the best performance either comes from Expert fea-
ture or comes ASTNN suggests that ASTNN is comparable
to expert-designed features because of its ability of handling
the linguistic structure of student syntactic code.

In the Temporal group, Temporal-ASTNN based models are
the best. More specifically, both Temporal-ASTNNTrunc

and Temporal-ASTNNEntire outperform Expert-LSTM and
Token-LSTM on accuracy, AUC, precision and F1 scores,
except that the best recall is from Token-LSTM. Between
the two Temporal-ASTNN models, Temporal-ASTNNTrunc

is generally better than Temporal-ASTNNEntire as it achieves
higher accuracy, Recall, F1-score, and AUC. This is proba-
bly because by using the truncated training data for repre-
sentation learning, Temporal-ASTNNTrunc is more likely to
capture the temporal information that are not only predic-
tive of student success but also more likely to be observed
in the testing with only the first-4-minute data.

When further comparing temporal models with last-value
models, we can see that all temporal models achieve better
accuracy than their corresponding last-value models. It is
reasonable since temporal models are able to capture the
temporal information related to student success from the
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Table 6: iSnap Student Success Early Predictions in First-10-minute Overall

Data Feature Model Accuracy Precision Recall F1 score AUC
Majority Baseline 0.6604 - - - 0.5

Last-Value
Expert Expert-LG

0.6566
(0.05)

0.8209**
(0.06)

0.6229
(0.11)

0.7017
(0.06)

0.6725
(0.05)

Tokens Token-LG
0.5528
(0.02)

0.7072
(0.03)

0.5571
(0.07)

0.6203
(0.04)

0.5508
(0.03)

ASTs ASTNN
0.6642
(0.01)

0.7635
(0.03)

0.7200
(0.07)

0.7379
(0.02)

0.6378
(0.03)

Temporal

Expert Expert-LSTM
0.7189
(0.03)

0.7305
(0.05)

0.9343
(0.04)

0.8145
(0.01)

0.6255
(0.07)

Tokens Token-LSTM
0.6887
(0.02)

0.6966
(0.03)

0.9429**
(0.04)

0.8001
(0.01)

0.5687
(0.05)

ASTs
Temporal-ASTNNTrunc

0.7396
(0.02)

0.7597
(0.03)

0.8914
(0.03)

0.8190**
(0.01)

0.6679
(0.04)

Temporal-ASTNNEntire

0.7472**
(0.02)

0.7932
(0.04)

0.8316
(0.04)

0.8110
(0.02)

0.6943**
(0.03)

Note: best models in each group are in bold, and the overall best labeled with **

temporal sequences, but such information is not available to
last-value models.

Generally speaking, Temporal-ASTNN achieves the best per-
formance at the first-4-minute observation window, which
indicates that by combining ASTNN with LSTM, the temporal-
ASTNN is able to learn the temporal and linguistic knowl-
edge from student code sequences.

4.3.2 Results in First-10-minute Overall
Figure 6 (a) and (b) report Accuracy and AUC performance
respectively for four models predicting student success: three
temporal models and the best last-value model, ASTNN.
For each graph, x-axis is the observation window of early
prediction, here we vary the observation window from the
first 2 minutes up to 10 minutes; and y-axis is the Accu-
racy/AUC score. As shown in Table 1, students generally
take 10 to 60 minutes to complete the task and thus we took
a measurement every 2 minutes for the first 10 minutes to
generate the early stage predictions for each model. Table 6
show the comparison of all six models for the student success
early prediction in first-10-minute observation windows, we
reported the mean value and corresponding standard devia-
tion (in parenthesis) for each evaluation metric.

Table 6 shows a similar pattern as we observed earlier in
Table 5. In the group of Last-Value models, ASTNN out-
performs Expert-LG and Token-LG. Specifically, ASTNN
continues to achieve the best accuracy, Recall and F1 scores
in the first 10 minutes, and Expert-LG has the best AUC
and Precision scores. In the group of temporal models,
Temporal-ASTNN based models are still the best overall,
with higher scores on accuracy, AUC, Precison and F1. Ad-
ditionally, Temporal-ASTNNEntire is shown to be slightly
better than Temporal-ASTNNTrunc as it achieves higher ac-
curacy, AUC and Precision.

Both Figures 6 (a) and (b) show that Temporal-ASTNNEntire

is the best model for student success early prediction as it
stays on the top across all sizes of the observation window.
As the length of observation window extends, all temporal
models in general perform better, while the performance of

last-value models fluctuates. This is because that training
data includes more and more information and hereby the
performance of temporal models improves over longer se-
quences. After 6 minutes, Expert-LSTM starts to perform
as good as Temporal-ASTNN, which is not surprising. As
the expert features are designed to detect student state for fi-
nal grading, and student states will be more and more closer
to their final submissions with the longer sequences. The
fact that the best early predictions come from Temporal-
ASTNN really suggests that addressing both linguistic and
temporal nature of student code sequences brings us closer
to the truth of student learning procession during program-
ming, especially for the early stage (first 6 minutes).

5. RELATED WORK
5.1 Linguistic-based Models for Programming
A wide range of work has applied NLP techniques for pro-
gramming. Traditionally, some prior work directly uses the
tokens of ASTs for source code tasks [38, 12], by treating
programming languages as natural languages. Despite some
similarities, programming languages and natural languages
[25] differ in some important aspects. Programming is a
complex activity, and thus programs contain rich and ex-
plicit structural information. Recently, deep learning models
has shown the potential to grasp more information from AST
in many tasks. For example, TBCNN [24] takes the whole
AST of code as input and performs convolution computation
over tree structures, and it outperforms token-based models
in program functionalities classification and bubble-sort de-
tection. In the educational domain, Piech et al. (2015) pro-
posed NPM-RNN to simultaneously encode preconditions
and postconditions into points where a program can be used
as a linear mapping between these points [30]. Gupta et al.
(2019) presented a tree-CNN based method, that can local-
ize the bugs in a student program with respect to a failing
test case, without running the program [14]. More recently,
ASTNN and Code2Vec has shown great success.

Siting at the root of AST, ASTNN [42] was proposed to han-
dling the long-term dependency problems when taking the
large AST as input directly. AST is a form of representing
abstract syntactic structure of the source code [5], and it
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(a) Accuracy performance

(b) Area under ROC performance

Figure 6: Student Success Early Prediction on iSnap, last-
value models are in dashed lines with empty symbols, tem-
poral models are in solid lines with solid symbols, dark grey
lines are from the majority baseline.

has been widely used in the domain of source code analysis.
Similar to long texts in NLP, large ASTs can make deep
learning models venerable to gradient vanishing problems.
To address the issue, ASTNN splits the large AST of one
code fragment into a set of small trees in statement-level and
performs code vector embedding. It achieves state-of-the-art
performance in both code functionalities classification and
clone detection.

Code2Vec [1], on the other hand, utilizes AST-based paths
and attention mechanism to learn code vector representa-
tion. Instead of a set of ST-trees, it takes a collection of
leaf-to-leaf paths as input, and applies an attention layer
to average those vectors. As a result, the attention weights
can help to interpret the importance of paths. Code2Vec
has shown to be very effective in predicting the names for
program entities. Shi et al. (2021) also applied Code2Vec

on a block-based programming dataset and used the learned
embedding to cluster incorrect student submissions [34].

As far as we know, none of prior work has directly compared
the effectiveness of ASTNN against Code2Vec. And in this
work, we did extensive experiments across two programming
domains: one is a block-based novice programming envi-
ronment where the data size is relatively small; the other
is a web programming platform in Java, in which more la-
beled data is available. Our results consistently suggest that
ASTNN is able to capture more insights from student pro-
grams for correctness prediction.

5.2 Student Modeling for Programming
Student modeling has been widely and extensively explored
by utilizing student temporal sequences. For example, BKT
[8] and BKT-based models have been shown to be effective in
predicting students’ overall competence [26], predicting the
students’ next-step responses [41, 3, 27, 20], and the predic-
tion of post-test scores [18, 22]. In recent years, deep learn-
ing models, especially Recurrent Neural Network (RNN) or
RNN-based models such as LSTM have also been explored
in student modeling [29, 36, 17, 39, 40, 19]. Some work
showed that LSTM has superior performance over BKT-
based models [22, 29] or Performance Factors Analysis [28].
However, it has also been shown that RNN and LSTM did
not always have better performance when the simple, con-
ventional models incorporated other parameters [17, 39].

In the programming domain, prior research has explored var-
ious temporal models for modeling student learning progres-
sion. For example, Wang et al. (2017) applied a recursive
neural network similar to [30] as the embedding for student
submission sequence, then feed them into a 3-layer LSTM
to predict the student’s future performance. Please note
that the work is quite different from our proposed Temporal-
ASTNN. In Temporal-ASTNN, all the components are opti-
mized together during training, while they applied a global
embedding to generate the input sequences for LSTM. On
the other hand, Emerson et al. (2019) have utilized four cat-
egories of features: prior performance, hint usage, activity
progress, and interface interaction to evaluate the accuracy
of Logistic Regression models for multiple block-based pro-
gramming activities [11]. In our earlier work, we have used
the expert-designed features for a block-based programming
problem to train various temporal models, then made early
predictions on student learning outcomes [21, 23].

To our best knowledge, while most of the previous studies on
analyzing student programming data treated student code as
either linguistic or temporal, no prior work has combined the
two characteristics of programming data for student learning
progression. Thus our proposed Temporal-ASTNN is the
first attempt to addressing both aspects in student code.

6. CONCLUSIONS
Tracing student learning progression at early stage is a cru-
cial component of student modeling, since it allows tutoring
systems to intervene by providing needed support, such as
a hint, or by alerting an instructor. Both prediction tasks
involved in this work are challenging, especially the early
prediction task because: 1) the open-ended nature of pro-
gramming environment hinders the prediction of student fi-
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nal success, and 2) it is extremely hard to learn a meaningful
representation from student code. In this work, we con-
ducted a series of experiments to investigate the effective-
ness of Temporal-ASTNN for student learning progression.
We first evaluated ASTNN against Code2Vec on the task of
classifying the correctness of student programs across two
domains. Our results show that ASTNN consistently out-
performs the other models including Code2Vec and other
token-based baselines in both domains. And we can also
find that AST-based models generally achieve better per-
formance than token-based models, which is consistent with
prior research [24, 42]. In the second task of student early
prediction, we explored three different categories of features:
expert, tokens, and ASTs. And further compared Temporal-
ASTNN with other temporal models embedded with dif-
ferent feature set, as well as non-temporal baselines. Our
findings can be concluded as follows: 1) temporal models
usually outperforms non-temporal (last-value) models; 2)
token-based models can only capture very limited informa-
tion from student code; and 3) Temporal-ASTNN is the best
out of all models in the early prediction task, it can achieve
good performance with only the first-4-minute data.

Limitations: There are two main limitations in this work.
First, we only explored the effectiveness of Temporal-ASTNN
on one important student modeling task in one programming
environment, and thus it is not clear whether the same re-
sults will hold for different tasks or in other programming do-
mains. Second, time-aware LSTM [6] has shown to outper-
form LSTM on various early prediction tasks [23], while in
this work we only compared our Temporal-ASTNN against
normal LSTM without considering time-awareness. Never-
theless, one of the main goal in this work is to investigate
the robustness of Temporal-ASTNN from both sequential
and temporal embedding. Thus we have two different type
of models (last-value vs. temporal) as well as another two
different features (expert and tokens). Our experiments re-
sults have shown its superiority on both aspects, but still,
we are not clear about the effects of time-awareness.

Future Work: An important direction for future work is to
investigate the time-awareness on Temporal-ASTNN to de-
termine how it contributes to the model in the same task. In
addition, we are planning to employ Temporal-ASTNN to
other temporal tasks or different domains to explore whether
it continues to support improvement for programming envi-
ronments. Also, this work will be applied to larger groups of
students and longer programming tasks, along with integra-
tion of more informative features such as intervention and
demographic features to develop more robust models.
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[11] A. Emerson, F. J. Rodŕıguez, B. Mott, A. Smith,
W. Min, K. E. Boyer, C. Smith, E. Wiebe, and
J. Lester. Predicting early and often: Predictive
student modeling for block-based programming
environments. International Educational Data Mining
Society, 2019.

[12] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez,
and M. Monperrus. Fine-grained and accurate source
code differencing. In Proceedings of the 29th
ACM/IEEE international conference on Automated
software engineering, pages 313–324, 2014.

[13] D. Garcia, B. Harvey, and T. Barnes. The Beauty and
Joy of Computing. ACM Inroads, 6(4):71–79, 2015.

[14] R. Gupta, A. Kanade, and S. Shevade. Neural
attribution for semantic bug-localization in student
programs. Network, 1(P2):P2, 2019.

[15] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and
P. Devanbu. On the naturalness of software.
Communications of the ACM, 59(5):122–131, 2016.

[16] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021) 181



www.manaraa.com

[17] M. Khajah, R. V. Lindsey, and M. C. Mozer. How
deep is knowledge tracing? arXiv preprint
arXiv:1604.02416, 2016.

[18] C. Lin and M. Chi. Intervention-bkt: incorporating
instructional interventions into bayesian knowledge
tracing. In ITS, pages 208–218. Springer, 2016.

[19] C. Lin and M. Chi. A comparisons of bkt, rnn and
lstm for learning gain prediction. In AIED, pages
536–539. Springer, 2017.

[20] C. Lin, S. Shen, and M. Chi. Incorporating student
response time and tutor instructional interventions
into student modeling. In UMAP, pages 157–161.
ACM, 2016.

[21] Y. Mao. One minute is enough: Early prediction of
student success and event-level difficulty during novice
programming tasks. In In: Proceedings of the 12th
International Conference on Educational Data Mining
(EDM 2019), 2019.

[22] Y. Mao, C. Lin, and M. Chi. Deep learning vs.
bayesian knowledge tracing: Student models for
interventions. JEDM, 10(2):28–54, 2018.

[23] Y. Mao and S. Marwan. What time is it? student
modeling needs to know. In In proceedings of the 13th
International Conference on Educational Data Mining,
2020.

[24] L. Mou, G. Li, Z. Jin, L. Zhang, and T. Wang. Tbcnn:
A tree-based convolutional neural network for
programming language processing. arXiv preprint
arXiv:1409.5718, 2014.

[25] J. F. Pane, B. A. Myers, et al. Studying the language
and structure in non-programmers’ solutions to
programming problems. International Journal of
Human-Computer Studies, 54(2):237–264, 2001.

[26] Z. A. Pardos and N. T. Heffernan. Modeling
individualization in a bayesian networks
implementation of knowledge tracing. In UMAP,
pages 255–266. Springer, 2010.

[27] Z. A. Pardos and N. T. Heffernan. Kt-idem:
Introducing item difficulty to the knowledge tracing
model. In UMAP, pages 243–254. Springer, 2011.

[28] P. I. Pavlik, H. Cen, and K. R. Koedinger.
Performance factors analysis –a new alternative to
knowledge tracing. In AIED, pages 531–538, 2009.

[29] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. J. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In NIPS, pages 505–513, 2015.

[30] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati,
M. Sahami, and L. Guibas. Learning program
embeddings to propagate feedback on student code. In
International conference on machine Learning, pages
1093–1102. PMLR, 2015.

[31] T. Price, R. Zhi, and T. Barnes. Evaluation of a
data-driven feedback algorithm for open-ended
programming. International Educational Data Mining
Society, 2017.

[32] T. W. Price, Y. Dong, and D. Lipovac. iSnap:
Towards Intelligent Tutoring in Novice Programming
Environments. In Proceedings of the ACM Technical
Symposium on Computer Science Education, pages
483–488, 2017.

[33] T. W. Price, D. Hovemeyer, K. Rivers, G. Gao, A. C.

Bart, A. M. Kazerouni, B. A. Becker, A. Petersen,
L. Gusukuma, S. H. Edwards, et al. Progsnap2: A
flexible format for programming process data. In
Proceedings of the 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, pages 356–362, 2020.

[34] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa,
and T. Price. Toward semi-automatic misconception
discovery using code embeddings. In The 11th
International Conference on Learning Analytics &
Knowledge (LAK 21), 2021.

[35] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D.
Manning. Parsing natural scenes and natural language
with recursive neural networks. In ICML, 2011.

[36] S. Tang, J. C. Peterson, and Z. A. Pardos. Deep
neural networks and how they apply to sequential
education data. In L@S, pages 321–324. ACM, 2016.

[37] L. Wang, A. Sy, L. Liu, and C. Piech. Learning to
represent student knowledge on programming
exercises using deep learning. International
Educational Data Mining Society, 2017.

[38] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In 2009 IEEE 31st International
Conference on Software Engineering, pages 364–374.
IEEE, 2009.

[39] K. H. Wilson, Y. Karklin, B. Han, and C. Ekanadham.
Back to the basics: Bayesian extensions of irt
outperform neural networks for proficiency estimation.
arXiv preprint arXiv:1604.02336, 2016.

[40] X. Xiong, S. Zhao, E. Van Inwegen, and J. Beck.
Going deeper with deep knowledge tracing. In EDM,
pages 545–550, 2016.

[41] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon.
Individualized bayesian knowledge tracing models. In
AIED, pages 171–180. Springer, 2013.

[42] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and
X. Liu. A novel neural source code representation
based on abstract syntax tree. In 2019 IEEE/ACM
41st International Conference on Software
Engineering (ICSE), pages 783–794. IEEE, 2019.

[43] R. Zhi, T. W. Price, N. Lytle, Y. Dong, and
T. Barnes. Reducing the state space of programming
problems through data-driven feature detection. In
EDM (Workshops), 2018.

182 Proceedings of The 14th International Conference on Educational Data Mining (EDM 2021)


